Universo de Vida

Friday, March 23, 2007

Marte

Geologia planetária
A ciência que estuda Marte é a areologia (de Ares, o deus grego da guerra). Em comparação com o globo terrestre: Marte tem 53% do diâmetro, 28% da superfície e 11% da massa; é assim um mundo bem menor que a Terra. Como os oceanos cobrem cerca de 71% da superfície terrestre e Marte carece de mares, as terras de ambos os mundos têm aproximadamente a mesma superfície.
A composição da superfície é fundamentalmente de basalto vulcânico com um alto conteúdo em óxidos de ferro que proporcionam o vermelho característico da superfície. Pela sua natureza, assemelha-se com a limonite, óxido de ferro muito hidratado. Assim como na crosta da Terra e da Lua predominam os silicatos e os aluminatos, no solo de Marte são preponderantes os ferrosilicatos. Os seus três principais constituintes são, por ordem de abundância, o oxigénio, o silício e o ferro.
Observações feitas ao campo magnético de Marte pela sonda Mars Global Surveyor relevaram que partes da crosta do planeta tem sido magnetizada em bandas alternativas, tipicamente medindo 160 km por 1000 km, num padrão semelhante ao encontrado no fundo dos oceanos da Terra. Uma teoria publicada em 1999 refere que estas bandas podem ser a evidência de uma operação passada de placas tectónicas em Marte, contudo isto ainda não foi comprovado. A ser verdade, os processos envolvidos podem ter ajudado a manter uma atmosfera semelhante á da Terra através do transporte de rochas ricas em carbono para a superfície, enquanto que a presença de um campo magnético protegeria o planeta de radiação cósmica. Outras explicações foram também propostas.
Marte é formado por rocha sólida, embora o núcleo seja constituído por rocha e ferro fundido. Assim deverá ter um grande núcleo de Ferro. Marte tem um campo magnético menor que o da lua Ganímedes de Júpiter e é, apenas, 2% do campo magnético da Terra.


Os vulcões gigantescos
Os vulcões em Marte são divididos em três tipos: "Montes", "Tholis" e "Paterae".
Os "Montes" (singular "mons") são muito grandes, provavelmente basálticos e de leves inclinações. Os "Tholis" (singular "Tholus") ou abóbadas são menores e mais íngremes que os montes, com um aspecto abobadado. Os vulcões "Paterae" (singular "patera") são muito variados; com inclinações muito rasas e caldeiras complexas; muitos têm ainda canais radiais nos flancos.
Olympus Mons (Monte Olímpo) é um vulcão extinto com 27 km de altura, 600 quilómetros de diâmetro na base e uma caldeira de 60 quilómetros de largura. Assim, é a maior montanha do sistema solar e é mais de três vezes maior que o monte Evereste (8848 m) e tem mais de 13 vezes a altura da Serra da Estrela (2000 m). O vulcão extinguiu-se há um milhão de anos atrás e encontra-se numa vasta região alta chamada Tharsis que com Elysium Planitia contém vários vulcões gigantescos, que são cerca de 100 vezes maiores que aqueles encontrados na Terra.
Um dos maiores vulcões, Arsia Mons tem os lados ligeiramente inclinados, construídos sucessivamente por fluidos de lava de uma única abertura. Arsia Mons é o vulcão mais a sul em Tharsis e tem cerca de 9 km de altura e a sua caldeira tem 110 km, a maior cadeira entre os vulcões marcianos. A norte deste vulcão, situa-se o vulcão Pavoris Mons (7 km de altura), e a norte desse encontra-se Ascraeus Mons que tem mais de 11 km de altura. Ascraeus, Pavonis e Arsia formam um grupo de vulcões conhecidos como Tharsis Montes que se encontram a sudeste de Olympus Mons.
Conforme os resultados da Mars Express, o vulcão Hecates Tholus terá tido uma grande erupção há cerca de 350 milhões de anos atrás. Este vulcão localiza-se em Elysium Planitia e tem um diâmetro de 183 km; a erupção criou uma caldeira e duas depressões aparentemente cheias de depósitos glaciais, incluindo gelo. Hecates Tholus é o vulcão mais a norte de Elysium; os outros são Elysium Mons e Albor Tholus. O pico da actividade vulcânica em Marte terá sido há cerca de 1500 milhões de anos atrás.
As imagens da Mars Express mostraram também o que parecem ser cones vulcânicos na região do pólo Norte sem nenhuma cratera à volta, o que sugere que tiveram erupção muito recente, o que levou alguns cientistas a acreditar que o planeta poderá ainda ser geologicamente activo. Poderão existir entre 50 a 100 destes cones com 300 a 600 metros de altura cobrindo uma região do pólo Norte com um milhão de quilómetros quadrados; parte da região de Tharsis também tem características semelhantes. Estes aspectos na superfície podem ter sido o resultado de antigas elevações que tenham sofrido erosão pelo vento, mas julga-se que isto é pouco provável devido à inexistência de crateras e aspectos originados pelo vento naquela região.
Alba Patera é uma vulcão único em Marte e no sistema solar, localiza-se a norte de Tharsis, numa região de falhas que surge em Tharsis e se estende para norte. Alba Patera é muito grande com mais de 1600 km de diâmetro, tem uma caldeira central, mas tem uma altura de apenas 3 km, no seu ponto mais alto. Possui canais nos flancos, e a maioria deles têm 100 km de comprimento, alguns chegam a ter 300 km, sugerindo que a lava fluiu por longos períodos de tempo.
No entanto, os vulcões marcianos são pouco numerosos, mas são testemunhas do passado violento e vulcânico daquela zona, mas são largamente maiores que a maior montanha de origem vulcânica na Terra: o Kilimanjaro (5895 m) em África. As áreas vulcânicas ocupam cerca de 10 porcento da superfície do planeta. Algumas crateras mostram sinais de erupção recente e têm lava petrificada nos cantos.

Crateras

No hemisfério Sul existe um velho planalto de lava basáltica semelhantes aos «mares» da Lua, e coberta por crateras do tipo lunar. No entanto, a paisagem marciana difere da nossa lua, devido à existência de uma atmosfera. Em particular, o vento carregado de poeira foi produzindo um efeito de erosão ao longo do tempo, e que arrasou muitas crateras, apesar de ainda conter um número considerável. Assim, por conseguinte, existem muito menos crateras que na Lua, apesar de se situar mais perto da cintura de asteróides. A maior parte das crateras que resistiram estão mais ou menos devastadas pela erosão. Muitas das crateras mais recentes têm uma morfologia que sugere que a superfície estava húmida quando ocorreu o impacto.
Grande parte destas crateras localizam-se no hemisfério sul. A maior é Hellas Planitia nesse hemisfério, tem 6km de profundidade e 2000 km de diâmetro e está coberta por areia alaranjada e é tratada como uma planície tal como outras enormes crateras antigas e planas.
Algumas crateras menores têm nomes de cidades e vilas da Terra, como por exemplo: a crateras Aveiro e Lisboa com nomes de cidades portuguesas, a cratera Mafra, Caxias e Viana com nomes de cidades brasileiras, e as crateras Longa e Santaca em honra de localidades em Angola e Moçambique, respectivamente. Em Marte, as crateras de maior dimensão são dedicadas a personalidades, assim a cratera Schiaparelli é a maior cratera (se desconceituarmos as crateras grandes e antigas) com 471 km de diâmetro. No hemisfério sul, a cratera Magalhães é uma cratera de dimensão considerável com 105 km de diâmetro e dedicada ao navegador português Fernão de Magalhães.


A atmosfera e o clima

A atmosfera marciana é uma atmosfera rarefeita de dióxido de carbono, mas no passado teria sido abundante. Apesar disto, Marte apresenta muitas particularidades curiosas, como neve carbônica, calotas polares de gelo seco, tempestades de poeira e redemoinhos.
Ao contrário do céu azul da Terra, Marte tem um céu amarelo-acastanhado, excepto durante o nascer e o pôr-do-sol que toma uma cor rosa e vermelha. Se a atmosfera fosse limpa de poeira, o céu de Marte seria tão azul como o da Terra. Em alturas que há menos poeira, a cor do céu é então mais próxima ao azul da Terra.
Auroras acontecem em Marte, mas não acontecem nos pólos como na Terra, isto é devido à inexistência em Marte de um campo magnético global. Assim, estas acontecem onde existem anomalias magnéticas na crosta marciana, que são restos dos dias nos quais Marte tinha um campo magnético. Assim, estas auroras são diferentes das observadas no resto do sistema solar.


Composição

A pressão atmosférica na superfície é de cerca 750 pascais, cerca de 0,75 porcento da média da Terra. Contudo, a pressão atmosférica varia ao longo do ano devido à dissipação durante o Verão do dióxido de carbono congelado nos pólos, tornando a atmosfera mais densa. Além disso, a atmosfera tem 11 km de altura, maior que os 6 km da Terra. A atmosfera marciana é composta por 95 porcento dióxido de carbono, 3 porcento azoto/ nitrogênio, 1,6 por cento Árgon, e possui vestígios de oxigénio e vapor de água.
Em
2003, descobriu-se metano na atmosfera, com uma concentração de cerca 11±4 ppb por volume. A presença do metano em Marte é muito intrigante, já que é um gás instável e indica que há (ou existiu nos últimos cem anos) uma fonte do gás no planeta. A actividade vulcânica, impacto de cometas e a existência de vida na forma de microrganismos estão entre as possibilidades ainda não comprovadas. O metano aparece em certos pontos da atmosfera, o que sugere que é rapidamente quebrado, logo poderá estar a ser constantemente libertado para a atmosfera, antes que se distribua uniformemente pela atmosfera. Foram feitos planos recentemente para procurar gases "companheiros" que podem sugerir as fontes mais prováveis; a produção biológica de metano na Terra tende a ser acompanhada por etano, enquanto que a produção vulcânica tende a ser acompanhada por dióxido de enxofre.

As estações do ano

Marte tem estações do ano, mas estas duram o dobro das estações na Terra; o ano marciano é também o dobro do terrestre (cerca de 1 ano e 11 meses terrestres). Mas a duração do dia em Marte é pouco diferente do da Terra e é de 24 horas, 39 minutos e 35 segundos.
A fina atmosfera não consegue segurar o calor e é a causa das baixas temperaturas em Marte, sendo 20 graus positivos a temperatura mais alta que atinge. Contudo, não existem dados suficientes que permitam conhecer a evolução ao longo do ano marciano nas diferentes latitudes e, muito menos, as particularidades regionais. Além de se encontrar mais afastado do Sol que a Terra e da sua atmosfera ser ténue, há a notar a baixa condutividade térmica do solo marciano e uma diferença mais pronunciada que a Terra no que toca à variação das temperaturas diurna e nocturna.
A temperatura à superfície depende da latitude e apresenta variações entre as diferentes estações do ano. A temperatura média à superfície é de cerca de -55º C. A variação da temperatura durante o dia é muito elevada já que se trata de uma atmosfera bastante ténue.
No Verão em Marte, a temperatura média atinge os -36 graus antes do nascer do dia. Pela tarde, atinge os -31 graus, por vezes a média pode chegar aos -4,5 graus e são raras as temperaturas superiores a zero graus, mas que podem alcançar os 20 ºC ou mais no equador. No entanto, a temperatura mínima pode descer até aos 80 graus negativos. No Inverno, as temperaturas descem até aos -130 graus nos pólos e chega mesmo a nevar. Mas trata-se de neve carbónica, já que o carbono é o principal constituinte da atmosfera. A temperatura mais baixa registada em Marte foi de -187 graus e a mais alta, em pleno verão e quando o planeta se encontrava mais próximo do Sol, foi de 27ºC.

Tempestades de areia
Apesar da atmosfera ténue, formam-se manchas de nuvens e nevoeiro e ventos intensos varrem poeiras, tornando o céu rosado. Essa poeira residual na atmosfera tornava grandes partes escuras, que se pensava serem vegetação e intrigou os astrónomos durante mais de um século. Ocasionalmente e de forma repentina, todo o planeta é submergido por uma tempestade maciça de poeira que pode persistir durante semanas ou até meses. Estas tempestades são mais frequentes durante o perélio da órbita do planeta e no hemisfério sul, quando ali é final da Primavera, estas tempestades são causadas por ventos na ordem dos 150 km/h. As tempestades têm origem na diferença de energia que o planeta recebe do Sol no afélio e no perélio. Quando Marte se encontra perto do perélio da sua órbita, a temperatura eleva-se no hemisfério Sul no final da Primavera e porque se encontra mais perto do Sol, o solo perde humidade.
Em certas regiões, especialmente entre Noachis e Hellas, desencadeia-se uma tempestade local violenta que arranca do solo seco imponentes massas de poeira. Esta poeira, por ser muito fina, eleva-se a grandes altitudes e, em semanas, cobre o solo todo do hemisfério, ou até mesmo a totalidade do planeta.
A poeira em suspensão na atmosfera causa uma neblina amarela que escurece os aspectos mais marcantes do planeta. Ao tapar o sol, as temperaturas máximas diminuem, mas como é criada uma manta que impede a dissipação do calor, as temperaturas mínimas aumentam. Em consequência, a oscilação térmica diurna diminui de forma drástica. Assim acontece em 1971, as tempestades impossibilitaram durante um certo tempo as observações que deveriam efectuar as duas sondas norte-americanas Mariner e as duas sondas soviéticas Mars que tinham acabado de chegar a Marte.
Redemoinhos de poeira foram primeiramente fotografados pelas sondas Viking na década de 70 do século XX. Em 1997, a Pathfinder detectou um redemoinho. Estes redemoinhos podem ser até cinquenta vezes mais largo e até dez vezes mais altos que os terrestres. O veículo robô Spirit fotografou várias imagens a partir do chão de redemoinhos de poeira.



Fontes: wikipedia




0 Comments:

Post a Comment

<< Home